Мобильное программирование приложений реального времени в стандарте POSIX

       

Опрос и изменение атрибутов потоков управления


Следуя классическому принципу "познай самого себя", описание функций, обслуживающих потоки управления, мы начнем с функции pthread_self(), возвращающей в качестве результата идентификатор вызвавшего ее потока (см. листинг 1.1).

#include <pthread.h> pthread_t pthread_self (void);

Листинг 1.1. Описание функции pthread_self(). (html, txt)

Выше мы отмечали, что тип pthread_t трактуется стандартом POSIX-2001 как абстрактный. На уровне языка C он может быть представлен, например, структурой. Для работы со значениями типа pthread_t предусмотрены два метода: присваивание и сравнение на равенство, реализуемое функцией pthread_equal() (см. листинг 1.2).

#include <pthread.h> int pthread_equal (pthread_t t1, pthread_t t2);

Листинг 1.2. Описание функции pthread_equal(). (html, txt)

Если значения аргументов t1 и t2 равны, результат функции pthread_equal() отличен от нуля.

Атрибуты потоков управления, используемые при создании последних, сгруппированы в упоминавшиеся выше атрибутные объекты. Для инициализации и разрушения атрибутных объектов служат функции pthread_attr_init() и pthread_attr_destroy() (см. листинг 1.3).

#include <pthread.h>

int pthread_attr_init ( pthread_attr_t *attr);

int pthread_attr_destroy ( pthread_attr_t *attr);

Листинг 1.3. Описание функций pthread_attr_init() и pthread_attr_destroy(). (html, txt)

Функция pthread_attr_init() инициализирует атрибутный объект, заданный указателем attr, подразумеваемыми значениями для всех индивидуальных атрибутов потоков управления, предусмотренных реализацией.

Функция pthread_attr_destroy() разрушает заданный атрибутный объект. Впрочем, "разрушает", возможно, слишком сильный термин. Быть может, реализация просто присваивает значениям атрибутов недопустимые значения. Во всяком случае, разрушенный атрибутный объект в дальнейшем может быть вновь инициализирован.

Структура атрибутных объектов скрыта от приложений, но сам набор стандартизованных атрибутов выглядит вполне естественно.


Следуя классическому принципу "познай самого себя", описание функций, обслуживающих потоки управления, мы начнем с функции pthread_self(), возвращающей в качестве результата идентификатор вызвавшего ее потока (см. листинг 1.1).

#include <pthread.h> pthread_t pthread_self (void);

Листинг 1.1. Описание функции pthread_self().

Выше мы отмечали, что тип pthread_t трактуется стандартом POSIX-2001 как абстрактный. На уровне языка C он может быть представлен, например, структурой. Для работы со значениями типа pthread_t предусмотрены два метода: присваивание и сравнение на равенство, реализуемое функцией pthread_equal() (см. листинг 1.2).

#include <pthread.h> int pthread_equal (pthread_t t1, pthread_t t2);

Листинг 1.2. Описание функции pthread_equal().

Если значения аргументов t1 и t2 равны, результат функции pthread_equal() отличен от нуля.

Атрибуты потоков управления, используемые при создании последних, сгруппированы в упоминавшиеся выше атрибутные объекты. Для инициализации и разрушения атрибутных объектов служат функции pthread_attr_init() и pthread_attr_destroy() (см. листинг 1.3).

#include <pthread.h>

int pthread_attr_init ( pthread_attr_t *attr);

int pthread_attr_destroy ( pthread_attr_t *attr);

Листинг 1.3. Описание функций pthread_attr_init() и pthread_attr_destroy().

Функция pthread_attr_init() инициализирует атрибутный объект, заданный указателем attr, подразумеваемыми значениями для всех индивидуальных атрибутов потоков управления, предусмотренных реализацией.

Функция pthread_attr_destroy() разрушает заданный атрибутный объект. Впрочем, "разрушает", возможно, слишком сильный термин. Быть может, реализация просто присваивает значениям атрибутов недопустимые значения. Во всяком случае, разрушенный атрибутный объект в дальнейшем может быть вновь инициализирован.

Структура атрибутных объектов скрыта от приложений, но сам набор стандартизованных атрибутов выглядит вполне естественно. Их описание мы начнем с атрибутов стека – начального адреса и размера – и методов для их опроса и установки (см.


Их описание мы начнем с атрибутов стека – начального адреса и размера – и методов для их опроса и установки (см. листинг 1.4).

#include <pthread.h>

int pthread_attr_getstack ( const pthread_attr_t *restrict attr, void **restrict stackaddr, size_t *restrict stacksize);

int pthread_attr_setstack ( pthread_attr_t *attr, void *stackaddr, size_t stacksize);

Листинг 1.4. Описание функций pthread_attr_getstack() и pthread_attr_setstack(). (html, txt)

Размер стека должен составлять не менее PTHREAD_STACK_MIN, начальный адрес – должным образом выровнен. Память, отведенная под стек, должна быть доступна на чтение и запись.

Функция pthread_attr_getstack() помещает атрибуты стека по указателям stackaddr и stacksize. Это – проявление единообразной для семейства функций pthread*(), обслуживающих потоки управления, дисциплины возврата результатов. Содержательные данные помещаются в выходные аргументы. При нормальном завершении результат функции равен нулю; в противном случае выдается код ошибки.

Подобная дисциплинированность является похвальной, но вынужденной. Ее причина – в разделении данных между потоками. Нельзя просто вернуть указатель на статический буфер – другой поток может в это время так или иначе работать с ним. Поэтому поток должен зарезервировать индивидуальные области памяти для размещения выходных значений (обратившись, например, к malloc()) и передать функции указатели на них.

Для опроса и изменения размера защитной области, служащей цели обнаружения переполнения стека, предназначены функции pthread_attr_getguardsize() и pthread_attr_setguardsize() (см. листинг 1.5).

#include <pthread.h>

int pthread_attr_getguardsize ( const pthread_attr_t *restrict attr, size_t *restrict guardsize);

int pthread_attr_setguardsize ( pthread_attr_t *attr, size_t guardsize);

Листинг 1.5. Описание функций pthread_attr_getguardsize() и pthread_attr_setguardsize(). (html, txt)

Если значение аргумента guardsize функции pthread_attr_setguardsize() равно нулю, при создании потоков управления с атрибутным объектом *attr защитная область отводиться не будет.


Положительные величины guardsize также становятся новыми значениями одноименного атрибута, однако являются лишь указанием операционной системе; реальный размер защитной области может быть больше заданного.

Приложение, соответствующее стандарту POSIX, должно использовать значения guardsize, кратные конфигурационной константе PAGESIZE, которая одновременно является подразумеваемым значением данного атрибута.

Если приложение посредством функции pthread_attr_setstack() взяло на себя управление стеками потоков, атрибут guardsize игнорируется, операционная система не отводит защитную область, а контроль за переполнением стека возлагается на приложение.

Отметим, что, в зависимости от ситуации, приложениям есть смысл как отказываться от защитных областей (например, если потоков управления много, памяти на защитные области уходит также много, и авторы приложения уверены, что переполнения стека быть не может), так и делать их размер больше подразумеваемого (например, если используются большие массивы и указатель стека рискует оказаться за верхней границей защитной области).

Стандартом POSIX-2001 предусмотрена группа атрибутов, обслуживающих планирование потоков управления. Соответствующие описания размещены в заголовочном файле <sched.h>. Центральную роль среди них играет структура типа sched_param, которая должна содержать по крайней мере поле int sched_priority; /* Приоритет планирования при выполнении потока */

Реализация может поддерживать политику планирования SCHED_SPORADIC (спорадическое планирование), предусматривающую резервирование определенного количества вычислительной мощности для обработки с заданным приоритетом неких единичных, непериодических (спорадических) событий. В этом случае должны быть определены конфигурационные константы _POSIX_SPORADIC_SERVER и/или _POSIX_THREAD_SPORADIC_SERVER, а в структуре sched_param должны присутствовать следующие дополнительные поля.

int sched_ss_low_priority; /* Нижняя граница приоритета */ /* планирования сервера */ /* спорадических событий */ struct timespec sched_ss_repl_period; /* Период пополнения бюджета */ /* спорадического сервера */ struct timespec sched_ss_init_budget; /* Начальный бюджет */ /* спорадического сервера */ int sched_ss_max_repl; /* Максимальное число */ /* ждущих операций */ /* пополнений бюджета */ /* спорадического сервера */



Для опроса и установки атрибутов планирования в атрибутных объектах служат функции pthread_attr_getschedparam() и pthread_attr_setschedparam() (см. листинг 1.6).

#include <pthread.h>

int pthread_attr_getschedparam ( const pthread_attr_t *restrict attr, struct sched_param *restrict param);

int pthread_attr_setschedparam ( pthread_attr_t *restrict attr, const struct sched_param *restrict param);

Листинг 1.6. Описание функций pthread_attr_getschedparam() и pthread_attr_setschedparam(). (html, txt)

Атрибут "политика планирования", способный принимать значения SCHED_FIFO (планирование по очереди), SCHED_RR (циклическое планирование), SCHED_OTHER ("прочее" планирование) и, возможно, SCHED_SPORADIC (спорадическое планирование), можно опросить и установить посредством функций pthread_attr_getschedpolicy() и pthread_attr_setschedpolicy() (см. листинг 1.7).

#include <pthread.h>

int pthread_attr_getschedpolicy ( const pthread_attr_t *restrict attr, int *restrict policy);

int pthread_attr_setschedpolicy ( pthread_attr_t *attr, int policy);

Листинг 1.7. Описание функций pthread_attr_getschedpolicy() и pthread_attr_setschedpolicy(). (html, txt)



листинг 1.4).

#include <pthread.h>

int pthread_attr_getstack ( const pthread_attr_t *restrict attr, void **restrict stackaddr, size_t *restrict stacksize);

int pthread_attr_setstack ( pthread_attr_t *attr, void *stackaddr, size_t stacksize);

Листинг 1.4. Описание функций pthread_attr_getstack() и pthread_attr_setstack().

Размер стека должен составлять не менее PTHREAD_STACK_MIN, начальный адрес – должным образом выровнен. Память, отведенная под стек, должна быть доступна на чтение и запись.

Функция pthread_attr_getstack() помещает атрибуты стека по указателям stackaddr и stacksize. Это – проявление единообразной для семейства функций pthread*(), обслуживающих потоки управления, дисциплины возврата результатов. Содержательные данные помещаются в выходные аргументы. При нормальном завершении результат функции равен нулю; в противном случае выдается код ошибки.

Подобная дисциплинированность является похвальной, но вынужденной. Ее причина – в разделении данных между потоками. Нельзя просто вернуть указатель на статический буфер – другой поток может в это время так или иначе работать с ним. Поэтому поток должен зарезервировать индивидуальные области памяти для размещения выходных значений (обратившись, например, к malloc()) и передать функции указатели на них.

Для опроса и изменения размера защитной области, служащей цели обнаружения переполнения стека, предназначены функции pthread_attr_getguardsize() и pthread_attr_setguardsize() (см. листинг 1.5).

#include <pthread.h>

int pthread_attr_getguardsize ( const pthread_attr_t *restrict attr, size_t *restrict guardsize);

int pthread_attr_setguardsize ( pthread_attr_t *attr, size_t guardsize);

Листинг 1.5. Описание функций pthread_attr_getguardsize() и pthread_attr_setguardsize().

Если значение аргумента guardsize функции pthread_attr_setguardsize() равно нулю, при создании потоков управления с атрибутным объектом *attr защитная область отводиться не будет. Положительные величины guardsize также становятся новыми значениями одноименного атрибута, однако являются лишь указанием операционной системе; реальный размер защитной области может быть больше заданного.



Приложение, соответствующее стандарту POSIX, должно использовать значения guardsize, кратные конфигурационной константе PAGESIZE, которая одновременно является подразумеваемым значением данного атрибута.

Если приложение посредством функции pthread_attr_setstack() взяло на себя управление стеками потоков, атрибут guardsize игнорируется, операционная система не отводит защитную область, а контроль за переполнением стека возлагается на приложение.

Отметим, что, в зависимости от ситуации, приложениям есть смысл как отказываться от защитных областей (например, если потоков управления много, памяти на защитные области уходит также много, и авторы приложения уверены, что переполнения стека быть не может), так и делать их размер больше подразумеваемого (например, если используются большие массивы и указатель стека рискует оказаться за верхней границей защитной области).

Стандартом POSIX-2001 предусмотрена группа атрибутов, обслуживающих планирование потоков управления. Соответствующие описания размещены в заголовочном файле <sched.h>. Центральную роль среди них играет структура типа sched_param, которая должна содержать по крайней мере поле int sched_priority; /* Приоритет планирования при выполнении потока */

Реализация может поддерживать политику планирования SCHED_SPORADIC (спорадическое планирование), предусматривающую резервирование определенного количества вычислительной мощности для обработки с заданным приоритетом неких единичных, непериодических (спорадических) событий. В этом случае должны быть определены конфигурационные константы _POSIX_SPORADIC_SERVER и/или _POSIX_THREAD_SPORADIC_SERVER, а в структуре sched_param должны присутствовать следующие дополнительные поля.

int sched_ss_low_priority; /* Нижняя граница приоритета */ /* планирования сервера */ /* спорадических событий */ struct timespec sched_ss_repl_period; /* Период пополнения бюджета */ /* спорадического сервера */ struct timespec sched_ss_init_budget; /* Начальный бюджет */ /* спорадического сервера */ int sched_ss_max_repl; /* Максимальное число */ /* ждущих операций */ /* пополнений бюджета */ /* спорадического сервера */



Для опроса и установки атрибутов планирования в атрибутных объектах служат функции pthread_attr_getschedparam() и pthread_attr_setschedparam() (см. листинг 1.6).

#include <pthread.h>

int pthread_attr_getschedparam ( const pthread_attr_t *restrict attr, struct sched_param *restrict param);

int pthread_attr_setschedparam ( pthread_attr_t *restrict attr, const struct sched_param *restrict param);

Листинг 1.6. Описание функций pthread_attr_getschedparam() и pthread_attr_setschedparam().

Атрибут "политика планирования", способный принимать значения SCHED_FIFO (планирование по очереди), SCHED_RR (циклическое планирование), SCHED_OTHER ("прочее" планирование) и, возможно, SCHED_SPORADIC (спорадическое планирование), можно опросить и установить посредством функций pthread_attr_getschedpolicy() и pthread_attr_setschedpolicy() (см. листинг 1.7).

#include <pthread.h>

int pthread_attr_getschedpolicy ( const pthread_attr_t *restrict attr, int *restrict policy);

int pthread_attr_setschedpolicy ( pthread_attr_t *attr, int policy);

Листинг 1.7. Описание функций pthread_attr_getschedpolicy() и pthread_attr_setschedpolicy().

Описанный выше атрибут "область планирования конкуренции", способный принимать значения PTHREAD_SCOPE_SYSTEM и PTHREAD_SCOPE_PROCESS, обслуживают функции pthread_attr_getscope() и pthread_attr_setscope() (см. листинг 1.8).

#include <pthread.h>

int pthread_attr_getscope ( const pthread_attr_t *restrict attr, int *restrict contentionscope);

int pthread_attr_setscope ( pthread_attr_t *attr, int contentionscope);

Листинг 1.8. Описание функций pthread_attr_getscope() и pthread_attr_setscope().

При создании потока управления все рассмотренные выше атрибуты планирования, в зависимости от значения PTHREAD_INHERIT_SCHED или PTHREAD_EXPLICIT_SCHED атрибута inheritsched, могут наследоваться у создающего потока или извлекаться из атрибутного объекта. Для опроса и изменения этого атрибута предназначены функции pthread_attr_getinheritsched() и pthread_attr_setinheritsched() (см.


листинг 1.9).

#include <pthread.h>

int pthread_attr_getinheritsched ( const pthread_attr_t *restrict attr, int *restrict inheritsched);

int pthread_attr_setinheritsched ( pthread_attr_t *attr, int inheritsched);

Листинг 1.9. Описание функций pthread_attr_getinheritsched() и pthread_attr_setinheritsched().

Атрибут обособленности потока управления, присутствующий в атрибутном объекте, можно опросить и установить посредством функций pthread_attr_getdetachstate() и pthread_attr_setdetachstate() (см. листинг 1.10).

#include <pthread.h>

int pthread_attr_getdetachstate ( const pthread_attr_t *attr, int *detachstate);

int pthread_attr_setdetachstate ( pthread_attr_t *attr, int detachstate);

Листинг 1.10. Описание функций pthread_attr_getdetachstate() и pthread_attr_setdetachstate().

Напомним, что значение этого атрибута (PTHREAD_CREATE_DETACHED или PTHREAD_CREATE_JOINABLE) определяет, будет ли поток управления создан как обособленный или присоединяемый, то есть доступный другим потокам для ожидания завершения. Подразумеваемым является значение PTHREAD_CREATE_JOINABLE.

Значения атрибутов планирования могут задаваться не только при создании потока управления. Стандарт POSIX-2001 предоставляет средства для их динамического изменения и опроса (см. листинг 1.11).

#include <pthread.h>

int pthread_getschedparam ( pthread_t thread, int *restrict policy, struct sched_param *restrict param);

int pthread_setschedparam ( pthread_t thread, int policy, const struct sched_param *param);

Листинг 1.11. Описание функций pthread_getschedparam() и pthread_setschedparam().

Отметим две тонкости, связанные с функцией pthread_setschedparam(). Во-первых, возможно, что для ее успешного вызова процесс должен обладать соответствующими привилегиями. Во-вторых, реализация не обязана поддерживать динамический переход к политике спорадического планирования (SCHED_SPORADIC) (как, впрочем, и саму эту политику).

Если требуется изменить лишь приоритет планирования, не меняя политику, проще воспользоваться функцией pthread_setschedprio() (см.


листинг 1.12), которая, правда, является новой и в исторически сложившихся реализациях может отсутствовать.

#include <pthread.h> int pthread_setschedprio ( pthread_t thread, int prio);

Листинг 1.12. Описание функции pthread_setschedprio().

Сходную направленность, но более глобальный характер имеют функции pthread_getconcurrency() и pthread_setconcurrency() (см. листинг 1.13), позволяющие опросить и изменить уровень параллелизма выполнения потоков управления.

#include <pthread.h>

int pthread_getconcurrency (void);

int pthread_setconcurrency (int new_level);

Листинг 1.13. Описание функций pthread_getconcurrency() и pthread_setconcurrency().

По умолчанию операционная система предоставляет возможность параллельно проявлять активность некоему "достаточному числу" потоков управления в процессе, так, чтобы это не вело к перерасходу системных ресурсов. Некоторым приложениям, однако, может требоваться более высокий уровень параллелизма; это требование они могут передать ОС в виде значения аргумента new_level функции pthread_setconcurrency(). Впрочем, с точки зрения операционной системы это всего лишь просьба или рекомендация; стандарт не специфицирует реально устанавливаемый уровень.

Нулевое значение аргумента new_level означает переход к подразумеваемому уровню параллелизма, как если бы функция pthread_setconcurrency() ранее не вызывалась.

Функция pthread_getconcurrency() в качестве результата возвращает значение уровня параллелизма, установленное предыдущим вызовом pthread_setconcurrency(). Если такового не было, выдается нуль.

Отметим, что изменение уровня параллелизма не рекомендуется использовать при реализации библиотечных функций, так как это может конфликтовать с запросами приложений.

К числу атрибутов потока управления можно отнести обслуживающие его часы процессорного времени. Для выяснения их идентификатора достаточно обратиться к функции pthread_getcpuclockid() (см. листинг 1.14).

#include <pthread.h> #include <time.h>

int pthread_getcpuclockid ( pthread_t thread_id, clockid_t *clock_id);



Листинг 1.14. Описание функции pthread_getcpuclockid().

Еще один атрибут потока управления – маска блокированных сигналов. Поток может опросить и/или изменить ее посредством вызова функции pthread_sigmask() (см. листинг 1.15) – аналога рассмотренной в курсе [1] функции sigprocmask().

#include <signal.h> int pthread_sigmask ( int how, const sigset_t *restrict set, sigset_t *restrict oset);

Листинг 1.15. Описание функции pthread_sigmask().

На листинге 1.16 приведен пример программы, использующей большинство описанных выше функций для опроса и изменения атрибутов потоков управления. Возможные результаты работы этой программы показаны на листинге 1.17.

/* * * * * * * * * * * * * * * * * * * * * * * * * * */ /* Программа опрашивает атрибуты потоков управления */ /* и изменяет некоторые из них */ /* * * * * * * * * * * * * * * * * * * * * * * * * * */

#define _XOPEN_SOURCE 600

#include <stdio.h> #include <pthread.h> #include <errno.h> #include <assert.h>

int main (void) { pthread_t ct_id; /* Идентификатор текущего потока управления */ pthread_attr_t patob; /* Атрибутный объект для создания потоков управления */ int res; /* Переменная для запоминания результатов "потоковых" функций */ void *stackaddr; /* Начало стека как атрибут потока управления */ size_t atrsize; /* Размеры как атрибуты потока управления */ /* Структура с параметрами планирования */ struct sched_param shdprm; char *spname; /* Названия политики планирования, области */ /* планирования конкуренции и т.п. */

printf ("Идентификатор текущего потока управления: %lx\n", (ct_id = pthread_self ()));

if ((errno = pthread_attr_init (&patob)) != 0) { perror ("PTHREAD_ATTR_INIT"); return (errno); }

printf ("Значения, установленные системой " "в атрибутном объекте\n");

if ((errno = pthread_attr_getstack (&patob, &stackaddr, &atrsize)) != 0) { perror ("PTHREAD_ATTR_GETSTACK"); return (errno); } printf ("Адрес начала стека: %p\n", stackaddr); printf ("Размер стека: %d\n", atrsize);



assert (pthread_attr_getguardsize (&patob, &atrsize) == 0); printf ("Размер защитной области: %d\n", atrsize);

assert (pthread_attr_getschedparam (&patob, &shdprm) == 0); assert (pthread_attr_getschedpolicy (&patob, &res) == 0); switch (res) { case SCHED_FIFO: spname = "Планирование по очереди"; break; case SCHED_RR: spname = "Циклическое планирование"; break; case SCHED_OTHER: spname = "Прочее планирование"; break; default: spname = "Неизвестная политика планирования"; } printf ("Политика планирования: %s\n", spname); printf ("Приоритет планирования: %d\n", shdprm.sched_priority);

assert (pthread_attr_getscope (&patob, &res) == 0); switch (res) { case PTHREAD_SCOPE_SYSTEM: spname = "Система"; break; case PTHREAD_SCOPE_PROCESS: spname = "Процесс"; break; default: spname = "Неизвестная область планирования " "конкуренции"; } printf ("Область планирования конкуренции: %s\n", spname);

assert (pthread_attr_getinheritsched (&patob, &res) == 0); switch (res) { case PTHREAD_INHERIT_SCHED: spname = "Наследуются у родительского потока"; break; case PTHREAD_EXPLICIT_SCHED: spname = "Извлекаются из атрибутного объекта"; break; default: spname = "Устанавливаются неизвестным образом"; } printf ("Атрибуты планирования: %s\n", spname);

assert (pthread_attr_getdetachstate (&patob, &res) == 0); switch (res) { case PTHREAD_CREATE_JOINABLE: spname = "Присоединяемые"; break; case PTHREAD_CREATE_DETACHED: spname = "Обособленные"; break; default: spname = "Неизвестные"; } printf (" Потоки управления создаются как: %s\n", spname);

/* Изменим значения атрибутов планирования и уровня */ /* параллелизма */ shdprm.sched_priority = 1; if ((errno = pthread_setschedparam (ct_id, SCHED_RR, &shdprm)) != 0) { perror ("PTHREAD_SETSCHEDPARAM"); } if ((errno = pthread_setconcurrency (8192)) != 0) { perror ("PTHREAD_SETCONCURRENCY"); } printf ("\nТекущие значения атрибутов потоков управления\n");



assert (pthread_getschedparam (ct_id, &res, &shdprm) == 0); switch (res) { case SCHED_FIFO: spname = "Планирование по очереди"; break; case SCHED_RR: spname = "Циклическое планирование"; break; case SCHED_OTHER: spname = "Прочее планирование"; break; default: spname = "Неизвестная политика планирования"; } printf ("Политика планирования: %s\n", spname); printf ("Приоритет планирования: %d\n", shdprm.sched_priority); printf ("Уровень параллелизма: %d\n", pthread_getconcurrency());

return 0; }

Листинг 1.16. Пример программы, опрашивающей и изменяющей значения атрибутов потоков управления.

Идентификатор текущего потока управления: 400 Значения, установленные системой в атрибутном объекте Адрес начала стека: 0xffe01000 Размер стека: 2093056 Размер защитной области: 4096 Политика планирования: Прочее планирование Приоритет планирования: 0 Область планирования конкуренции: Система Атрибуты планирования: Извлекаются из атрибутного объекта Потоки управления создаются как: Присоединяемые

Текущие значения атрибутов потоков управления Политика планирования: Циклическое планирование Приоритет планирования: 1 Уровень параллелизма: 8192

Листинг 1.17. Возможные результаты работы программы, опрашивающей и изменяющей значения атрибутов потоков управления.

Листинг 1.18 содержит результаты выполнения упрощенного варианта этой же программы (без вызовов функций pthread_attr_getstack(), pthread_attr_getguardsize(), pthread_getconcurrency(), pthread_setconcurrency() и без соответствующих выдач) для операционной системы реального времени oc2000, соответствующей подмножеству требований стандарта POSIX-2001.

Идентификатор текущего потока управления: f31ae0 Значения, установленные системой в атрибутном объекте Политика планирования: Планирование по очереди Приоритет планирования: 100 Область планирования конкуренции: Процесс Атрибуты планирования: Извлекаются из атрибутного объекта Потоки управления создаются как: Присоединяемые

Текущие значения атрибутов потоков управления Политика планирования: Циклическое планирование Приоритет планирования: 1

Листинг 1.18. Возможные результаты работы программы, опрашивающей и изменяющей значения атрибутов потоков управления, для операционной системы реального времени oc2000.


Содержание раздела